RHEL 8 Helm Chart
In this guide we will go from a basic RHEL 8 operating system to a fully functioning Layar installation. This guide is intended as an example installation only and makes configuration decisions that may not be best suited for your environment.
Prerequisites
Hardware
- 256 GB RAM
- 16+ CPUs
- 1TB SSD
- 1x A10 Series GPU
Additional Requirements
- The system must have an external DNS entry (not relying on
/etc/hosts
) with the corresponding IP assigned to the host. - Internet access from the installation system is a requirement.
- Swap must be disabled.
- SELinux must be disabled or set to
Permissive
.
LLM Requirements
Certara AI allows you to utilize various LLMs for your GPT needs. The models available are determined by the version of Layar you are planning to install. Please review the available models and the minimum GPU requirements needs to run those models
Installation
Commands should be run as root
or prefixed with sudo
.
Install docker
yum install -y yum-utils
yum-config-manager \
--add-repo \
https://download.docker.com/linux/centos/docker-ce.repo
yum -y install docker-ce
systemctl --now enable docker
Increase operating system vm.max_map_count
vm.max_map_count
echo "vm.max_map_count=262144" > /etc/sysctl.d/99-vyasa.conf
sysctl -p /etc/sysctl.d/99-vyasa.conf
Configure NetworkManager to ignore Calico interfaces
If using NetworkManager, edit the file /etc/NetworkManager/conf.d/calico.conf
and set the following:
[keyfile]
unmanaged-devices=interface-name:cali*;interface-name:tunl*;interface-name:vxlan.calico;interface-name:wireguard.cali
Restart NetworkManager
systemctl restart NetworkManager
Install kernel development packages and compiler
dnf -y install kernel-devel-$(uname -r) kernel-headers-$(uname -r) gcc
Install and enable the EPEL and CUDA repository
dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
dnf-config-manager --enable epel
Install CUDA 12
dnf module install nvidia-driver:latest-dkms
dnf install -y cuda-12
nvidia-smi
Install NVIDIA Docker toolkit
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | tee /etc/yum.repos.d/nvidia-docker.repo
yum install -y nvidia-docker2 nvidia-container-runtime
Set docker default runtime
Edit the file /etc/docker/daemon.json
and replace its contents with:
{
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime",
"runtimeArgs": []
}
}
}
Restart docker
systemctl restart docker
Add kubernetes repo
cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-\$basearch
enabled=1
gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF
Install Kubernetes and initialize
dnf install -y kubeadm-1.23.15-00 kubelet-1.23.15-00 kubectl-1.23.15-00
/usr/bin/kubeadm init --kubernetes-version=1.23.15 --token-ttl 0 --pod-network-cidr=10.17.0.0/16 -v 5
mkdir -p $HOME/.kube
cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
chown $(id -u):$(id -g) $HOME/.kube/config
Install NGINX Ingress controller
kubectl apply -f https://vyasa-static-assets.s3.amazonaws.com/layar/nginx-ingress.yaml
Install Calico CNI
kubectl create -f https://vyasa-static-assets.s3.amazonaws.com/layar/tigera-operator.yaml
kubectl create -f https://vyasa-static-assets.s3.amazonaws.com/layar/custom-resources.yaml
Let head node run pods
/usr/bin/kubectl taint nodes --all node-role.kubernetes.io/master:NoSchedule-
Install local volume provisioner
/usr/bin/kubectl apply -f https://vyasa-static-assets.s3.amazonaws.com/layar/local-storage-provisioner.yml
Set default storage class
kubectl patch storageclass 'local-path' -p '{"metadata":{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
Install Helm
wget -P /usr/local/bin/ https://vyasa-static-assets.s3.amazonaws.com/helm/helm
chmod +x /usr/local/bin/helm
Add the Layar helm repository
helm repo add vyasa https://helm.vyasa.com/charts/ --username vyasahelm --password "sail#away()"
helm repo update
Install Layar
Replace MY_URL
with the IP address or DNS name of your system and setting TRITON_GPU_COUNT to n-1 of available GPUs.
helm install layar vyasa/layar --set APPURL=MY_URL --set TRITON_GPU_COUNT=MY_GPU_COUNT
Updated 4 months ago